
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Krzysztof Banaś Computational Performance 2

Scalability

➔ Standard parallel performance measures
 speed-up
 efficiency

characterise the so called strong scalability of programs
➔ Good strong scalability, being closed to the perfect, linear speed-up,

is difficult to obtain, e.g. due to:
 sequential (not possible to be parallelized) parts of the program/algorithm (as

in Amdahl law)
 communication

➔ It is possible to obtain good parallel performance also for programs
with sequential parts and communication

 for many algorithms/programs the speed-up curves become closer to the
perfect speed-up with the increasing problem size

• the most popular way for expressing problem size is the number of (dominant)
operations – the operations for which the execution time is proportional to the
number of operations

Krzysztof Banaś Computational Performance 3

Krzysztof Banaś Computational Performance 4

Scalability

➔ Strong scalability measures the performance for the increasing number
of resources used in computations (processors, computational nodes)

➔ The standard notions of scalability include also the condition of
increasing workload

➔ The increasing workload in case of programs may be the number of
dominant operations

 sometimes the execution time for single processor/core is taken as the
workload

 in the simplified analysis the time per single dominant operation is
constant – so the number of dominant operations is proportional to the
execution time for single processor/core

➔ Weak scalability denotes the scalability for the case where the total
workload is not constant (as for the strong scalability), but the workload
per single processor/core (thread/process) is constant

 constant workload per thread/process means the total workload
proportional to the number of threads/processes

Krzysztof Banaś Computational Performance 5

Weak scalability

➔ For weak scalability study, one can define the execution
time as the function of the number of threads/processes
and the workload

 T|| = T||(p, W) = (for weak scalability) T||(p, pW0)
➔ Then it is possible to define the scaled speed-up, SS(p):

 SS(p) = T||(1, pW0) / T||(p, pW0) = p*T||(1, W0) / T||(p, pW0)
➔ A program/algorithm has linear weak scalability when its

scaled speed-up is linear
➔ Linear weak scalability is equivalent to:

 the same execution time for p-times larger problems
executed on p cores/processors

 the parallel overhead constant per single processor/core for
p-times larger problems executed on p cores/processors

Krzysztof Banaś Computational Performance 6

Scalability of computations

➔ Scalability is the key property for obtaining high performance
of computations

➔ Weak scalability (almost linear) can be attributed to many
algorithms, while linear strong scalability is extremely rare

➔ The general relation:
 performance = number_of_operations / execution_time

can be transformed to the expression:
 performance = speed-up / execution_time_per_single_operation

• good speed-up denotes effectively parallelized programs
• short execution_time_per_single_operation characterises well

optimized single thread computations
• hence the total performance has two ingredients:

➢ scalability
➢ single thread performance

Krzysztof Banaś Computational Performance 7

Execution time modelling

➔ When modelling execution time several simplifying assumptions
can be adopted::

 The single thread execution time and the computation time for a
single thread in parallel programs are proportional to the number of
dominant operations, which for the considered algorithms are the
arithmetic operations

• the notion of arithmetic intensity makes also the execution time of
programs with memory limited performance proportional to the
number of arithmetic operations

 The time for performing a single dominant operation is constant and
denoted by tc

• tc is some amortized time per operation that includes memory accesses,
sequential execution system overhead (e.g. memory allocation), etc.

 Apart from tc there are only two other hardware parameters, that
characterise the communication time: ts and tw

 The parallelized computations are perfectly balanced

Krzysztof Banaś Computational Performance 8

Example

➔ Calculation of the norm of vector with size N
➔ N additions and multiplications – decomposition to obtain local sums –

perfect speed-up possible
➔ Global sum reduction – communication time dominates arithmetic

operations time
➔ Naive algorithm – all threads/processes send their local sums to the

master thread/process
➔ Execution time modelling: T||(p) = 2*N*tc/p + p*(ts+8*tw)
➔ Workload (number of operations): W = 2*N
➔ The same workload per thread/process for week scalability study:

 W(p) = W1 * p = 2 * N1 * p
 T||(p) = 2*N*tc/p + p*(ts+8*tw) = 2 * N1 * tc + p * (ts+8*tw)

➔ Simple analysis to obtain: speed-up, efficiency, scaled speed-up, scaled
efficiency, isoefficiency function, memory size limited speed-up, etc.

Krzysztof Banaś Computational Performance 9

Example

Krzysztof Banaś Computational Performance 10

Example

Krzysztof Banaś Computational Performance 11

Optimization of parallel programs

➔ To minimize execution time for parallel programs, for
distributed memory computer architectures, the following steps
should be undertaken:

 load balancing
 minimization of the total size of messages
 minimization of the number of messages (by increasing the

granularity of computations)
 avoiding network contention
 reducing the time for additional operations related to parallel

computations (e.g. redundant computations – but redundant
computations can decrease the communication volume)

 reducing system overhead (e.g. for synchronization)
 overlapping computations with communication
 optimizing single thread execution time

• including optimizing memory accesses

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11

