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Scalability

> Standard parallel performance measures
" speed-up
= efficiency
characterise the so called strong scalability of programs

> Good strong scalability, being closed to the perfect, linear speed-up,

is difficult to obtain, e.g. due to:

= sequential (not possible to be parallelized) parts of the program/algorithm (as
in Amdahl law)

" communication

> It is possible to obtain good parallel performance also for programs
with sequential parts and communication

= for many algorithms/programs the speed-up curves become closer to the
perfect speed-up with the increasing problem size
« the most popular way for expressing problem size is the number of (dominant)
operations — the operations for which the execution time is proportional to the
number of operations
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Scalability

> Strong scalability measures the performance for the increasing number
of resources used in computations (processors, computational nodes)

> The standard notions of scalability include also the condition of
increasing workload

> The increasing workload in case of programs may be the number of
dominant operations

* sometimes the execution time for single processor/core is taken as the
workload

* in the simplified analysis the time per single dominant operation is
constant — so the number of dominant operations is proportional to the
execution time for single processor/core

> Weak scalability denotes the scalability for the case where the total
workload is not constant (as for the strong scalability), but the workload
per single processor/core (thread/process) is constant

* constant workload per thread/process means the total workload
proportional to the number of threads/processes
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Weak scalability

> For weak scalability study, one can define the execution
time as the function of the number of threads/processes
and the workload

* Ty, = Ty(p, W) = (for weak scalability) T (p, pWo)
> Then it is possible to define the scaled speed-up, S°(p):
" $°(p) = Tu(1, pWo) / Ty(p, pWo) = p*T\(1, Wo) / T)(p, pWo)
> A program/algorithm has linear weak scalability when its
scaled speed-up is linear
> Linear weak scalability is equivalent to:

* the same execution time for p-times larger problems
executed on p cores/processors

= the parallel overhead constant per single processor/core for
p-times larger problems executed on p cores/processors
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Scalability of computations

> Scalability is the key property for obtaining high performance
of computations

> Weak scalability (almost linear) can be attributed to many
algorithms, while linear strong scalability is extremely rare

> The general relation:
= performance = number_of_operations / execution_time

can be transformed to the expression:
= performance = speed-up / execution_time_per_single_operation
 good speed-up denotes effectively parallelized programs

* short execution_time_per_single_operation characterises well
optimized single thread computations

* hence the total performance has two ingredients:
> scalability
~ single thread performance
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Execution time modelling

> When modelling execution time several simplifying assumptions
can be adopted::

* The single thread execution time and the computation time for a
single thread in parallel programs are proportional to the number of
dominant operations, which for the considered algorithms are the
arithmetic operations

* the notion of arithmetic intensity makes also the execution time of

programs with memory limited performance proportional to the
number of arithmetic operations

* The time for performing a single dominant operation is constant and
denoted by t.

* t. is some amortized time per operation that includes memory accesses,
sequential execution system overhead (e.g. memory allocation), etc.

= Apart from t. there are only two other hardware parameters, that
characterise the communication time: t; and t,
* The parallelized computations are perfectly balanced
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Example

Calculation of the norm of vector with size N

N additions and multiplications — decomposition to obtain local sums —
perfect speed-up possible

Global sum reduction — communication time dominates arithmetic
operations time

Naive algorithm — all threads/processes send their local sums to the
master thread/process

Execution time modelling: T(p) = 2*N*t./p + p*(t:+8*tw)
Workload (number of operations): W = 2*N
The same workload per thread/process for week scalability study:
" WpP)=W1*p=2*N;*p
* Ty(p) = 2*N*t/p + p*(ts+8*t,) = 2 * Ny * t. + p * (t:+8*t,)

Simple analysis to obtain: speed-up, efficiency, scaled speed-up, scaled
efficiency, isoefficiency function, memory size limited speed-up, etc.
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Example
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Example
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Optimization of parallel programs

> To minimize execution time for parallel programs, for
distributed memory computer architectures, the following steps
should be undertaken:

" ]oad balancing
" minimization of the total size of messages

" minimization of the number of messages (by increasing the
granularity of computations)

" avoiding network contention

" reducing the time for additional operations related to parallel
computations (e.g. redundant computations — but redundant
computations can decrease the communication volume)

" reducing system overhead (e.g. for synchronization)
" overlapping computations with communication
" optimizing single thread execution time

* including optimizing memory accesses
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