Analysis and modeling of
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Single compute node

> Performance on a single
compute node:
" absolute
* GFLOP/s
* GB/s
" relative
* speed-up
* efficiency
" due to limited core and
memory resources
* speed-up is limited
* strong scalability
study is often
performed for large

problems (using most
of DRAM memory)
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Strong scalability

> Parallel speed-up
" in theory

*S(p)=T,/T(p)
" in practice

+ S(p) = T,(1)/ T (p)

> Parallel efficiency

" E(p) =100% *S(p)/p

> Perfect speed-up

"S(p)=p
" E(p) = 100%

> Superlinear speed-up is
possible
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Single compute node resources
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Memory scalability for different processors
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Memory throughput — single thread

Bandwidth

Memory benchmark
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Memory throughput - scalability

Bandwidth [GB/s]

Memory benchmark Intel(R) Xeon(R) CPU E5-2670
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Scalability

> Impediments to intra-node scalability:
" single thread performance
* first step in optimization is often single thread optimization
" system overhead
* thread management, memory management
* synchronization for shared data: mutexes, atomic operations, etc.
" resource exhaustion
* memory bandwidth, I/O bandwidth
* thread affinity and resource contention
* the use of processing power of cores
> load balancing; SMT, hyperthreading — not really parallel
* the use of memory hierarchy
> TLB and cache flushing for context switches
> NUMA accesses, first touch allocation
> arrays alignment, cache line contention, false sharing
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Cache coherence

> FEach value in any cache is a copy (at least initially) of the value
in the corresponding main memory location

" when reading data, caches are just a mean for speeding up the
process

" when writing data (even for single thread execution), there appear
different possible strategies:

* if the memory location being the target of write operation has its
copy in a cache:

> write-through — the write operation may update the value in the
cache and in the memory

> write-back — the write operation update only the value in the
cache and the modification of the value in the memory is
postponed, e.g. until the cache line is evicted from the cache

* if the memory location has no copy in cache:
> write-allocate — first read data into cache then modify it in cache
> no-write-allocate — write data directly to memory
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Cache coherence
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> The most popular writing
strategy is the combination of
write-back and write-allocate
approaches

Iz Iz " for this strategy the values
— —— corresponding to the same
! memory location in a cache and
S, i in memory can become different
v s I e there must exist a method for
[ s el BTV specifying which one is the
¢ ¢ proper current value
e ew the problem is even more
¢ - ¢ important when several caches
= exist that contain the copies of
L S the same memory location, as is
- often the case for multi-core
-— multithreading
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Cache coherence

> Cache coherence protocol is an State diagram of the
algorithm for maintaining the MESI protocol
coherent state of caches

" cache coherence protocol can be

based on: » " &
* snooping (observing) the state of o

bus by each cache controller

* putting shared cached data in a \
separate directory BW PRAS Pw BR Bw PW  BR

" snooping protocols often use the \
strategy of modifying the state for
each cache line, depending on the o - @
processor activity and observed bus u
activity (write invalidate strategy) s O

BR + BW PR + BR

PR + PW

* one of such protocols is MESI PR = processor read  BR = observed bus read
. . PW = processor write BW = observed bus write
protocol with the states: Exclusive, S5 - haredNOT shared

Modified, Shared and Invalid
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Cache coherence

> Cache coherence may lead to unnecessary performance
degradation when several threads modify repeatedly different
variables (apparently with no dependence) that reside in a memory
block corresponding to a single cache line — so called false sharing

* when one thread modifies its variable it makes the whole cache line
invalid for all other threads

" when another thread wants to modify its own (different) variable it
finds the cache line invalid and have to read it again, modify the
variable and make the whole cache line invalid for all other threads

" then the first thread wants to modify
its own unknown and the whole
process repeats, and so on

" the described situation leads to
many subsequent reads-for-
ownership, when a cache line is read
in order to be modified as owned
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