Analysis and modeling of

Computational Performance

Single node computational performance

Krzysztof Banas Computational Performance 1

Single compute node

> Performance on a single
compute node:
" absolute
* GFLOP/s
* GB/s
" relative
* speed-up
* efficiency
" due to limited core and
memory resources
* speed-up is limited
* strong scalability
study is often
performed for large

problems (using most
of DRAM memory)

Krzysztof Banas Computational Performance 2

Strong scalability

> Parallel speed-up
" in theory

*S(p)=T,/T(p)
" in practice

+ S(p) = T,(1)/ T (p)

> Parallel efficiency

" E(p) =100% *S(p)/p

> Perfect speed-up

"S(p)=p
" E(p) = 100%

> Superlinear speed-up is
possible

Krzysztof Banas

Spesad-up

140

120

100 -

Sirong scal ability of Mod FEM computations

MNdaof=20000 -——--
Ndof=4 0B89E -« .-
MNdof=B0000 ---w---
MNdof=160178 —8--
Mdof=320000 ---m--
Mdof=6407 12 = -
Ndof=1280000 = »--
perfeci speed-up ————

...**I'_'.
et o
’ ?'F;"E. 5
) .-';I_-:- :
'-:_;"f' L
_-E.:‘-f:' . o s S e s R AR
.-';r -
2 .
A
g - P
20 40 60 B0 100 120 140

Mumber of processes/cores

Computational Performance

Single compute node resources

5Pép Pl olP|[P|P|P]

L1D L1D ||l LD 4'9| : L1D L1D L1D LD ||
| L2 L2 il L2 J:‘ | L2 . L2 :
I |

' coherent |

link € =g
Memory J - Memory }
Parallel resources: Shared resources:
= Execution/SIMD units @) = Quter cache level per socket
* Cores @ = Memory bus per socket @)

« Inner cache levels €)
= Sockets / ccNUMA domains @)
= Multiple accelerators @

Intersocket link €
PCle bus(es) ©
Other 1/O resources @

Krzysztof Banas Computational Performance 4

Memory scalability for different processors

T T T T T T T | I T T T | I
- S - 40~ L3 I3 3 R [[[.
° T R EEEE
fE— T e I;
o 1111 :
20 -
10 . - i
Intel Sandy Bridge i AMD Interlagos
o— : : ' : : 0 > 4 6 5 10 a2 11 s
1) ° ; Thread5$ ° ! ° # Threads
LA RAL IR | T |
180 1601
140 140
100 100_—
@ w L
& 80 - D gol
50 ~— | 2-socket []
ok _ 17 CPUnode | !
I Intel Xeon Phi 5110P j 40 NVIDIA K20 7
20 — 20 -
O-é —5 30 050 a'o- T R T
3 4 5 L] 7
¥ Thveads 10 100 renld 10 10
Krzysztof Banas Computational Performance 5

Memory throughput — single thread

Bandwidth

Memory benchmark

80000_ T L | 1 rrrj T T T T rrr]
: : vy Bridge - vectorized ---—+---
N : i lvy Bridge - not vectorized ------
AN +47 T : ; :
- Voo i *F._ f v !
TOOOO oy
RN B
60000 B i
07000] e ——.:T B i i B
é 3
00701010 J - N O N S
C '''4“-I—-I~-I~-i-"—'-+-+.+_.1@k
: B
30000 %x‘xxxxx --------------------------------- q_g -- -- -----------
20000 F
10000 [
O . L L L L L L1 1.3 L L L L L1 1 1 L L L L L1 1 1
100 1000 10000 100000 1e+06

Array size

Krzysztof Banas Computational Performance 6

Memory throughput - scalability

Bandwidth [GB/s]

Memory benchmark Intel(R) Xeon(R) CPU E5-2670

1600 . - ———r .
. i Sandy Bridge - vectorized - p=1 -+~
| i Sandy Bridge - vectorized - p= 2 ---X---
mayEm ¥ Sandy Bridge - vectorized - p=4 - Honeen
1400 e T T A Sandy Bridge - vectorized - p= 8 — -3 — -
! i Sandy Bridge - vectorized - p=16 - -=--
1200 o - - it iiptiin e
= 5 5 5
1000 Bt ----- _ -- --------------
BOO frvmrvomoroen g A R
Soa e B | |
i .
600 [memmmeeees Eﬂ -- e
A . |
g I S——
400 _%aeag*m*ﬁé% ----- E..E.'l ---------- S
p M i
P ox : :
X P i
200 -><><><><><><><5-<-----?E%%xx%%xxxx%*%%*ﬂ; --------------------------------------
X * :
+++% XxxxxxxxxxxxxxxxxxXX% xxxxx%xx¥¥¥%xxxx%%“uﬂ
‘F++_|_|_F+_|_|_H__H_1_++_|_|_F++=+_X_>|<_>I<>§>I<X>(XXXX><XXXXXXXXI
0 ..I 1 MR L R LI 1 1 il
1000 170000 100000 1e+06

Array size

Krzysztof Banas Computational Performance 7

Scalability

> Impediments to intra-node scalability:
" single thread performance
* first step in optimization is often single thread optimization
" system overhead
* thread management, memory management
* synchronization for shared data: mutexes, atomic operations, etc.
" resource exhaustion
* memory bandwidth, I/O bandwidth
* thread affinity and resource contention
* the use of processing power of cores
> load balancing; SMT, hyperthreading — not really parallel
* the use of memory hierarchy
> TLB and cache flushing for context switches
> NUMA accesses, first touch allocation
> arrays alignment, cache line contention, false sharing

Krzysztof Banas Computational Performance 8

Cache coherence

> FEach value in any cache is a copy (at least initially) of the value
in the corresponding main memory location

" when reading data, caches are just a mean for speeding up the
process

" when writing data (even for single thread execution), there appear
different possible strategies:

* if the memory location being the target of write operation has its
copy in a cache:

> write-through — the write operation may update the value in the
cache and in the memory

> write-back — the write operation update only the value in the
cache and the modification of the value in the memory is
postponed, e.g. until the cache line is evicted from the cache

* if the memory location has no copy in cache:
> write-allocate — first read data into cache then modify it in cache
> no-write-allocate — write data directly to memory

Krzysztof Banas Computational Performance 9

Cache coherence

Memoi

Read Request
Yes

rite
| type |

> The most popular writing
strategy is the combination of
write-back and write-allocate
approaches

Iz Iz " for this strategy the values
— —— corresponding to the same
! memory location in a cache and
S, i in memory can become different
v s I e there must exist a method for
[s el BTV specifying which one is the
¢ ¢ proper current value
e ew the problem is even more
¢ - ¢ important when several caches
= exist that contain the copies of
L S the same memory location, as is
- often the case for multi-core
-— multithreading
Krzysztof Banas Computational Performance 10

Cache coherence

> Cache coherence protocol is an State diagram of the
algorithm for maintaining the MESI protocol
coherent state of caches

" cache coherence protocol can be

based on: » " &
* snooping (observing) the state of o

bus by each cache controller

* putting shared cached data in a \
separate directory BW PRAS Pw BR Bw PW BR

" snooping protocols often use the \
strategy of modifying the state for
each cache line, depending on the o - @
processor activity and observed bus u
activity (write invalidate strategy) s O

BR + BW PR + BR

PR + PW

* one of such protocols is MESI PR = processor read BR = observed bus read
. . PW = processor write BW = observed bus write
protocol with the states: Exclusive, S5 - haredNOT shared

Modified, Shared and Invalid

Krzysztof Banas Computational Performance 11

Cache coherence

> Cache coherence may lead to unnecessary performance
degradation when several threads modify repeatedly different
variables (apparently with no dependence) that reside in a memory
block corresponding to a single cache line — so called false sharing

* when one thread modifies its variable it makes the whole cache line
invalid for all other threads

" when another thread wants to modify its own (different) variable it
finds the cache line invalid and have to read it again, modify the
variable and make the whole cache line invalid for all other threads

" then the first thread wants to modify
its own unknown and the whole
process repeats, and so on

" the described situation leads to
many subsequent reads-for-
ownership, when a cache line is read
in order to be modified as owned

Krzysztof Banas Computational Performance 12

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12

