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Analysis and modeling of

Computational Performance

Single node computational performance
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Single compute node

➔ Performance on a single 
compute node:

 absolute
• GFLOP/s
• GB/s

 relative
• speed-up
• efficiency

 due to limited core and 
memory resources

• speed-up is limited
• strong scalability 

study is often 
performed for large 
problems (using most 
of DRAM memory)
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Strong scalability

➔ Parallel speed-up
 in theory

• S(p) = T
s
 / T

||
(p)

 in practice
• S(p) = T

||
(1) / T

||
(p)

➔ Parallel efficiency
 E(p) = 100% * S(p) / p

➔ Perfect speed-up
 S(p) = p
 E(p) = 100%

➔ Superlinear speed-up is 
possible
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Single compute node resources
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Memory scalability for different processors
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Memory throughput – single thread
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Memory throughput - scalability
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Scalability

➔ Impediments to intra-node scalability:
 single thread performance

• first step in optimization is often single thread optimization
 system overhead

• thread management, memory management
• synchronization for shared data: mutexes, atomic operations, etc.

 resource exhaustion
• memory bandwidth, I/O bandwidth

 thread affinity and resource contention
• the use of processing power of cores

➢ load balancing; SMT, hyperthreading – not really parallel
• the use of memory hierarchy

➢ TLB and cache flushing for context switches
➢ NUMA accesses, first touch allocation
➢ arrays alignment, cache line contention, false sharing
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Cache coherence

➔ Each value in any cache is a copy (at least initially) of the value 
in the corresponding main memory location

 when reading data, caches are just a mean for speeding up the 
process

 when writing data (even for single thread execution), there appear 
different possible strategies:

• if the memory location being the target of write operation has its 
copy in a cache:

➢ write-through – the write operation may update the value in the 
cache and in the memory 

➢ write-back – the write operation update only the value in the 
cache and the modification of the value in the memory is 
postponed, e.g. until the cache line is evicted from the cache

• if the memory location has no copy in cache:
➢ write-allocate – first read data into cache then modify it in cache
➢ no-write-allocate – write data directly to memory
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Cache coherence

➔ The most popular writing 
strategy is the combination of 
write-back and write-allocate 
approaches

 for this strategy the values 
corresponding to the same 
memory location in a cache and 
in memory can become different

 there must exist a method for 
specifying which one is the 
proper current value

 the problem is even more 
important when several caches 
exist that contain the copies of 
the same memory location, as is 
often the case for multi-core 
multithreading
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Cache coherence

➔ Cache coherence protocol is an 
algorithm for maintaining the 
coherent state of caches

 cache coherence protocol can be 
based on:

• snooping (observing) the state of 
bus by each cache controller

• putting shared cached data in a 
separate directory

 snooping protocols often use the 
strategy of modifying the state for 
each cache line, depending on the 
processor activity and observed bus 
activity (write invalidate strategy)

• one of such protocols is MESI 
protocol with the states: Exclusive, 
Modified, Shared and Invalid

State diagram of the 
MESI protocol
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Cache coherence

➔ Cache coherence may lead to unnecessary performance 
degradation when several threads modify repeatedly different 
variables (apparently with no dependence) that reside in a memory 
block corresponding to a single cache line – so called false sharing

 when one thread modifies its variable it makes the whole cache line 
invalid for all other threads

 when another thread wants to modify its own (different) variable it 
finds the cache line invalid and have to read it again, modify the 
variable and make the whole cache line invalid for all other threads

 then the first thread wants to modify 
its own unknown and the whole 
process repeats, and so on

 the described situation leads to 
many subsequent reads-for-
ownership, when a cache line is read 
in order to be modified as owned
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