
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Single node computational performance

Krzysztof Banaś Computational Performance 2

Single compute node

➔ Performance on a single
compute node:

 absolute
• GFLOP/s
• GB/s

 relative
• speed-up
• efficiency

 due to limited core and
memory resources

• speed-up is limited
• strong scalability

study is often
performed for large
problems (using most
of DRAM memory)

Krzysztof Banaś Computational Performance 3

Strong scalability

➔ Parallel speed-up
 in theory

• S(p) = T
s
 / T

||
(p)

 in practice
• S(p) = T

||
(1) / T

||
(p)

➔ Parallel efficiency
 E(p) = 100% * S(p) / p

➔ Perfect speed-up
 S(p) = p
 E(p) = 100%

➔ Superlinear speed-up is
possible

Krzysztof Banaś Computational Performance 4

Single compute node resources

Krzysztof Banaś Computational Performance 5

Memory scalability for different processors

Krzysztof Banaś Computational Performance 6

Memory throughput – single thread

Krzysztof Banaś Computational Performance 7

Memory throughput - scalability

Krzysztof Banaś Computational Performance 8

Scalability

➔ Impediments to intra-node scalability:
 single thread performance

• first step in optimization is often single thread optimization
 system overhead

• thread management, memory management
• synchronization for shared data: mutexes, atomic operations, etc.

 resource exhaustion
• memory bandwidth, I/O bandwidth

 thread affinity and resource contention
• the use of processing power of cores

➢ load balancing; SMT, hyperthreading – not really parallel
• the use of memory hierarchy

➢ TLB and cache flushing for context switches
➢ NUMA accesses, first touch allocation
➢ arrays alignment, cache line contention, false sharing

Krzysztof Banaś Computational Performance 9

Cache coherence

➔ Each value in any cache is a copy (at least initially) of the value
in the corresponding main memory location

 when reading data, caches are just a mean for speeding up the
process

 when writing data (even for single thread execution), there appear
different possible strategies:

• if the memory location being the target of write operation has its
copy in a cache:

➢ write-through – the write operation may update the value in the
cache and in the memory

➢ write-back – the write operation update only the value in the
cache and the modification of the value in the memory is
postponed, e.g. until the cache line is evicted from the cache

• if the memory location has no copy in cache:
➢ write-allocate – first read data into cache then modify it in cache
➢ no-write-allocate – write data directly to memory

Krzysztof Banaś Computational Performance 10

Cache coherence

➔ The most popular writing
strategy is the combination of
write-back and write-allocate
approaches

 for this strategy the values
corresponding to the same
memory location in a cache and
in memory can become different

 there must exist a method for
specifying which one is the
proper current value

 the problem is even more
important when several caches
exist that contain the copies of
the same memory location, as is
often the case for multi-core
multithreading

Krzysztof Banaś Computational Performance 11

Cache coherence

➔ Cache coherence protocol is an
algorithm for maintaining the
coherent state of caches

 cache coherence protocol can be
based on:

• snooping (observing) the state of
bus by each cache controller

• putting shared cached data in a
separate directory

 snooping protocols often use the
strategy of modifying the state for
each cache line, depending on the
processor activity and observed bus
activity (write invalidate strategy)

• one of such protocols is MESI
protocol with the states: Exclusive,
Modified, Shared and Invalid

State diagram of the
MESI protocol

Krzysztof Banaś Computational Performance 12

Cache coherence

➔ Cache coherence may lead to unnecessary performance
degradation when several threads modify repeatedly different
variables (apparently with no dependence) that reside in a memory
block corresponding to a single cache line – so called false sharing

 when one thread modifies its variable it makes the whole cache line
invalid for all other threads

 when another thread wants to modify its own (different) variable it
finds the cache line invalid and have to read it again, modify the
variable and make the whole cache line invalid for all other threads

 then the first thread wants to modify
its own unknown and the whole
process repeats, and so on

 the described situation leads to
many subsequent reads-for-
ownership, when a cache line is read
in order to be modified as owned

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12

